Pure NQR Quantum Computing

G. B. Furman^{a,b} and S. D. Goren^b

^a College "Ogalo", Katzrin, 12900 Israel

^b Physics Department, Ben Gurion University, Beer Sheva, 84105 Israel

Reprint requests to Dr. G. B. F.; E-mail: gregoryf@bgumail.bgu.ac.il

Z. Naturforsch. **57 a,** 315–319 (2002); received April 2, 2002

Presented at the XVIth International Symposium on Nuclear Quadrupole Interactions, Hiroshima, Japan, September 9-14, 2001.

It is shown that pure NQR can be utilized as a platform for quantum computing without applying a high external magnetic field. By exciting each resonance transition between quadrupole energy levels with two radio-frequency fields differing in phase and direction, the double degeneracy of the spin energy spectrum in an electric field gradient is removed. As an example, in the case of I=7/2 (nuclei 133 Cs or 123 Sb) the energy spectrum has eight levels which can be used as three qubits.

Key words: NQR; Quantum Computing; Zeeman Effect.